Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Bio Mater ; 7(4): 2554-2568, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38574371

ABSTRACT

Multidrug-resistant bacteria are a serious problem in biomedical applications that decrease the wound healing process and increase the mortality rate. Therefore, in this study, we have prepared a green-synthesized silver-nanoparticle-encapsulated mucilage microsphere (HMMS@GSNP) from Hibiscus rosa sinensis leaves and applied it to pathogen-infected burn and excision wounds. Biophysical properties like size, polydispersity index, absorbance capacity, and drug release were measured by different techniques like field-emission scanning electron microscopy, dynamic light scattering, swelling ratio, etc. The strong antibacterial activity of a HMMS@GSNP microsphere was measured by minimum inhibitory concentration assay, minimum bactericidal concentration assay, and agar well diffusion methods. The HMMS@GSNP microsphere enhanced the cell viability, cell proliferation, migration, antioxidant, and antiinflammation activity compared to untreated GSNP and HMMS, as quantified by MTT assay, BrdU assay, scratch wound assay, reactive oxygen species scavenging assay, and Western blot analysis, respectively. In the in vivo experiment, we used a methicillin-resistant Staphylococcus aureus bacteria-infected, burn-and-excision-wound-created male BALB/c mice model. The HMMS@GSNP-treated burn-and-excision-wound-infected mice showed significant results compared to other groups (untreated, Silverex Ionic Gel, AgNO3, HMMS, and GSNP), and the mice tissues were utilized for bacteria count, immunoblot analysis, histological studies, and real-time polymerase chain reaction. Thus, the HMM@GSNP microsphere is an excellent therapeutic material that can be used as a topical agent for the management of chronic wound therapy.


Subject(s)
Burns , Methicillin-Resistant Staphylococcus aureus , Nanoparticles , Male , Mice , Animals , Silver , Microspheres , Burns/drug therapy
2.
Medicina (Kaunas) ; 59(9)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37763703

ABSTRACT

Autism spectrum disorder (ASD) is a developmental disorder that causes difficulty while socializing and communicating and the performance of stereotyped behavior. ASD is thought to have a variety of causes when accompanied by genetic disorders and environmental variables together, resulting in abnormalities in the brain. A steep rise in ASD has been seen regardless of the numerous behavioral and pharmaceutical therapeutic techniques. Therefore, using complementary and alternative therapies to treat autism could be very significant. Thus, this review is completely focused on non-pharmacological therapeutic interventions which include different diets, supplements, antioxidants, hormones, vitamins and minerals to manage ASD. Additionally, we also focus on complementary and alternative medicine (CAM) therapies, herbal remedies, camel milk and cannabiodiol. Additionally, we concentrate on how palatable phytonutrients provide a fresh glimmer of hope in this situation. Moreover, in addition to phytochemicals/nutraceuticals, it also focuses on various microbiomes, i.e., gut, oral, and vaginal. Therefore, the current comprehensive review opens a new avenue for managing autistic patients through non-pharmacological intervention.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Female , Humans , Autism Spectrum Disorder/therapy , Vitamins , Antioxidants , Brain
3.
J Drug Target ; 31(5): 521-536, 2023 06.
Article in English | MEDLINE | ID: mdl-37010248

ABSTRACT

Non-small cell lung cancer (NSCLC) is one of the most prevalent cancers diagnosed worldwide, yet managing it is still challenging. The epidermal growth factor receptor (EGFR) exhibits aberrant signalling in a wide range of human cancers, and it is reported to overexpress in most NSCLC cases. The monoclonal antibody [Cetuximab (Cet)] was conjugated onto the surface of the poly (lactide-co-glycolide) (PLGA) nanoparticles which were loaded with docetaxel (DTX) for the development of targeted therapy against lung cancer. This site-specific delivery system exhibited an enhanced cellular uptake in lung cancer cells which overexpress EGFR (A549 and NCI-H23). The nanoparticles also showed better therapeutic effectiveness against NSCLC cells, as evidenced by reduced IC50 values, cell cycle arrest at the G2/M phase, and increased apoptosis. The improved efficacy and in vivo tolerance of Cet-DTX NPs were demonstrated in benzo(a)pyrene (BaP)-induced lung cancer mice model. Histopathological analysis showed that intravenous injection of Cet-DTX NP to mice carrying lung cancer greatly reduced tumour development and proliferation. Comparing Cet-DTX NP to free drug and unconjugated nanoparticles, it also had negligible side effects and improved survival rates. Therefore, Cet-DTX NPs present a promising active targeting carrier for lung tumour-NSCLC-selective treatment.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Nanoparticles , Mice , Animals , Humans , Cetuximab/pharmacology , Cetuximab/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Prospective Studies , Taxoids , Lung Neoplasms/pathology , Docetaxel/pharmacology , ErbB Receptors/metabolism , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Drug Carriers/therapeutic use
4.
J Biol Chem ; 299(4): 103031, 2023 04.
Article in English | MEDLINE | ID: mdl-36805334

ABSTRACT

In the mammalian heart, fetal cardiomyocytes proliferate prior to birth; however, they exit the cell cycle shortly after birth. Recent studies show that adult cardiomyocytes re-enters the cell cycle postinjury to promote cardiac regeneration. The endoplasmic reticulum (ER) orchestrates the production and assembly of different types of proteins, and a disruption in this machinery leads to the generation of ER stress, which activates the unfolded protein response. There is a very fine balance between ER stress-mediated protective and proapoptotic responses. T-box transcription factor 20 (Tbx20) promotes embryonic and adult cardiomyocyte proliferation postinjury to restore cardiac homeostasis. However, the function and regulatory interactions of Tbx20 in ER stress-induced cardiomyopathy have not yet been reported. We show here that ER stress upregulates Tbx20, which activates downstream bone morphogenetic protein 2 (Bmp2)-pSmad1/5/8 signaling to induce cardiomyocyte proliferation and limit apoptosis. However, augmenting ER stress reverses this protective response. We also show that increased expression of tbx20 during ER stress is mediated by the activating transcription factor 6 arm of the unfolded protein response. Cardiomyocyte-specific loss of Tbx20 results in decreased cardiomyocyte proliferation and increased apoptosis. Administration of recombinant Bmp2 protein during ER stress upregulates Tbx20 leading to augmented proliferation, indicating a feed-forward loop mechanism. In in vivo ER stress, as well as in diabetic cardiomyopathy, the activity of Tbx20 is increased with concomitant increased cardiomyocyte proliferation and decreased apoptosis. These data support a critical role of Tbx20-Bmp2 signaling in promoting cardiomyocyte survival during ER stress-induced cardiomyopathies.


Subject(s)
Bone Morphogenetic Protein 2 , Endoplasmic Reticulum Stress , Myocytes, Cardiac , T-Box Domain Proteins , Animals , Apoptosis , Bone Morphogenetic Protein 2/metabolism , Gene Expression Regulation , Mammals/metabolism , Myocytes, Cardiac/metabolism , Transcription Factors/metabolism , Up-Regulation , T-Box Domain Proteins/metabolism
5.
Adv Exp Med Biol ; 1358: 275-323, 2022.
Article in English | MEDLINE | ID: mdl-35641875

ABSTRACT

Male infertility is a condition where the males either become sterile or critically infertile. The World Health Organisation assessed that approximately 9% of the couple have fertility issues where the contribution of the male partner was estimated to be 50%. There are several factors that can amalgamate to give rise to male infertility. Among them are lifestyle factors, genetic factors and as well as several environmental factors. The causes of male infertility may be acquired, congenital or sometimes idiopathic. All these factors adversely affect the spermatogenesis process as well as they impart serious threats to male genital organs thus resulting in infertility. Viruses are submicroscopic pathogenic agents that rely on host for their replication and survival. They enter the host cell, hijack the host cell machinery to aid their own replication and exit the cell for a new round of infection. With the growing abundance of different types of viruses and the havoc they have stirred in the form of pandemics, it is very essential to decipher their route of entry inside the human body and understand their diverse functional roles in order to combat them. In this chapter, we will review how viruses invade the male genital system thus in turn leading to detrimental consequence on male fertility. We will discuss the tropism of various viruses in the male genital organs and explore their sexual transmissibility. This chapter will summarise the functional and mechanistic approaches employed by the viruses in inducing oxidative stress inside spermatozoa thus leading to male infertility. Moreover, we will also highlight the various antiviral therapies that have been studied so far in order to ameliorate viral infection in order to combat the harmful consequences leading to male infertility.


Subject(s)
Infertility, Male , Virus Diseases , Viruses , Humans , Infertility, Male/etiology , Male , Spermatogenesis , Spermatozoa/metabolism , Virus Diseases/complications , Virus Diseases/metabolism
6.
Arch Biochem Biophys ; 722: 109198, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35358489

ABSTRACT

Cardiac disease is one of the most common complications associated with diabetes. Cardiac hypertrophy and fibrosis often lead to structural and functional abnormalities leading to risks of heart failure. Several regulatory molecules related to major signaling pathways have been found to overexpress in different tissues during diabetes which show very low level of expression in non-diabetic condition. YAP1 and FOXM1 are recently being reported to play important role in various hypertrophic and fibrotic disorders. But, very limited information is still known regarding their roles in cardiomyopathies especially in the context of diabetes and hyperglycemic stress. YAP1 is known to be associated with AKT- GSK3ß signaling that is one of the important regulatory pathways in glucose and lipid metabolism. On the other hand, the expression of FOXM1 has been found to be significantly upregulated in adult lung tissue with induction of fibrosis but little is known about their role in cardiac diseases. In our study, YAP1 and FOXM1 have been found to overexpress in cardiac tissue under hyperglycemic condition leading to cardiomyocyte hypertrophy and increased fibrotic response. Further YAP1 inhibition has resulted in a reduced expression of FOXM1 pointing to a possible association of YAP1 and FOXM1 in high glucose-stressed cardiomyocyte. As mechanism we have found that YAP1 undergoes reduced ser127 phosphorylation as well as extensive O-GlcNAcylation mediated activation under hyperglycemia. Upregulated YAP1 further acts through increased AKT phosphorylation causing inhibition of GSK3ß that in turn results in increased FOXM1 expression, leading to cardiomyocyte hypertrophy and fibrosis.


Subject(s)
Hyperglycemia , Proto-Oncogene Proteins c-akt , Cardiomegaly/pathology , Fibrosis , Forkhead Box Protein M1/metabolism , Glucose/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Hyperglycemia/metabolism , Myocytes, Cardiac/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , YAP-Signaling Proteins
7.
In Vitro Cell Dev Biol Anim ; 57(10): 973-986, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34845564

ABSTRACT

Cardiovascular disorders (CAVDs) being a major concern over the past several years due to the huge number of morbidity and mortality worldwide, a number of studies have been done on the various aspects of cardiac problems. One of the various CAVDs is cardiovascular calcification. A number of investigations and research work have been done previously on the molecular mechanism of vascular and heart valve calcification but the mechanism of myocardial and cardiomyocyte calcification has remained uninvestigated. A number of case studies have shown the presence of calcific deposits in the myocardial/ventricular region of the heart in fetal condition as well as in individuals of different ages but no detailed studies have been done yet. In this study, we have mainly investigated the role of Forkhead box transcription factor FoxO1 and nuclear factor of activated T-cells NFATc3 in cardiomyocyte calcification. Our studies in H9c2 cardiomyocytes show that calcific deposition in cardiomyocytes does not occur in 15 d but upon osteogenic induction for 1 mo where FoxO1 expression gets reduced thereby increasing the expression of its downstream target NFATc3, thus increasing the expression of the osteogenic marker Runx2. Detailed studies on the molecular mechanism of cardiomyocyte calcification will help in finding out therapeutic strategies in the treatment of cardiac calcification.


Subject(s)
Core Binding Factor Alpha 1 Subunit/metabolism , Myocytes, Cardiac/pathology , NFATC Transcription Factors/metabolism , Nerve Tissue Proteins/metabolism , Animals , Calcification, Physiologic , Calcinosis , Cell Line , Core Binding Factor Alpha 1 Subunit/genetics , Culture Media/pharmacology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/physiology , NFATC Transcription Factors/genetics , Nerve Tissue Proteins/genetics , Osteogenesis , Rats , Signal Transduction
8.
Mol Cell Biochem ; 476(11): 4061-4080, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34259975

ABSTRACT

The endoplasmic reticulum (ER) is an organelle that orchestrates the production and proper assembly of an extensive types of secretory and membrane proteins. Endoplasmic reticulum stress is conventionally related to prolonged disruption in the protein folding machinery resulting in the accumulation of unfolded proteins in the ER. This disruption is often manifested due to oxidative stress, Ca2+ leakage, iron imbalance, disease conditions which in turn hampers the cellular homeostasis and induces cellular apoptosis. A mild ER stress is often reverted back to normal. However, cells retaliate to acute ER stress by activating the unfolded protein response (UPR) which comprises three signaling pathways, Activating transcription factor 6 (ATF6), inositol requiring enzyme 1 alpha (IRE1α), and protein kinase RNA-activated-like ER kinase (PERK). The UPR response participates in both protective and pro-apoptotic responses and not much is known about the mechanistic aspects of the switch from pro-survival to pro-apoptosis. When ER stress outpaces UPR response then cell apoptosis prevails which often leads to the development of various diseases including cardiomyopathies. Therefore, it is important to identify molecules that modulate the UPR that may serve as promising tools towards effective treatment of cardiovascular diseases. In this review, we elucidated the latest advances in construing the contribution imparted by the three arms of UPR to combat the adverse environment in the ER to restore cellular homeostasis during cardiomyopathies. We also summarized the various therapeutic agents that plays crucial role in tilting the UPR response towards pro-survival.


Subject(s)
Cardiovascular Diseases/metabolism , Endoplasmic Reticulum Stress , Unfolded Protein Response , Animals , Apoptosis , Cardiovascular Diseases/pathology , Cell Survival , Homeostasis , Humans
9.
Cardiovasc Toxicol ; 20(3): 261-280, 2020 06.
Article in English | MEDLINE | ID: mdl-31571030

ABSTRACT

Arsenic toxicity is one of the major environmental problems causing various diseases, cardiovascular disorders is one of them. Several epidemiological studies have shown that arsenic causes cardiac hypertrophy but the detailed molecular mechanism is to be studied yet. This study is designed to determine the molecules involved in the augmentation of arsenic-induced cardiac hypertrophy. Furthermore, the effects of oleic acid on arsenic-induced hypertrophy and cardiac injury have also been investigated. Our results show that arsenic induces cardiac hypertrophy both in vivo in mice and in vitro in rat H9c2 cardiomyocytes. Moreover, arsenic results in decreased activity of AMPK and FoxO1 along with increased NFATc3 expression, a known cardiac hypertrophy inducer. In addition, activation of AMPK and FoxO1 results in reduced NFATc3 expression causing attenuation of arsenic-induced cardiac hypertrophy in H9c2 cells. Interestingly, we have observed that oleic acid helps in ameliorating cardiac hypertrophy in arsenic-exposed mice. Our studies on protection from arsenic-induced cardiac hypertrophy by oleic acid in H9c2 cells shows that oleic acid activates AMPK along with increased nuclear FoxO1 localization, thereby reducing NFATc3 expression and attenuating cardiomyocyte hypertrophy. This study will help in finding out new avenues in treating arsenic-induced cardiac hypertrophy.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Cardiomegaly/prevention & control , Forkhead Box Protein O1/metabolism , Myocytes, Cardiac/drug effects , NFATC Transcription Factors/metabolism , Nerve Tissue Proteins/metabolism , Oleic Acid/pharmacology , Animals , Arsenic Trioxide , Cardiomegaly/chemically induced , Cardiomegaly/enzymology , Cardiomegaly/pathology , Cardiotoxicity , Cell Line , Disease Models, Animal , Fibrosis , Forkhead Box Protein O1/genetics , Male , Mice , Myocytes, Cardiac/enzymology , Myocytes, Cardiac/pathology , NFATC Transcription Factors/genetics , Nerve Tissue Proteins/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...